Codes from Adjacency Matrices of Uniform Subset Graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Binary codes from reflexive uniform subset graphs on 3-sets

We examine the binary codes C2(Ai + I) from matrices Ai + I where Ai is an adjacency matrix of a uniform subset graph Γ(n, 3, i) of 3-subsets of a set of size n with adjacency defined by subsets meeting in i elements of Ω, where 0 ≤ i ≤ 2. Most of the main parameters are obtained; the hulls, the duals, and other subcodes of the C2(Ai + I) are also examined. We obtain partial PD-sets for some of...

متن کامل

determinants of adjacency matrices of graphs

we study the set of all determinants of adjacency matrices of graphs with a given number of vertices. using brendan mckay's data base of small graphs, determinants of graphs with at most $9$ vertices are computed so that the number of non-isomorphic graphs with given vertices whose determinants are all equal to a number is exhibited in a table. using an idea of m. newman, it is proved that if $...

متن کامل

Commutativity of the adjacency matrices of graphs

We say that two graphs G1 and G2 with the same vertex set commute if their adjacency matrices commute. In this paper, we find all integers n such that the complete bipartite graph Kn, n is decomposable into commuting perfect matchings or commuting Hamilton cycles. We show that there are at most n−1 linearly independent commuting adjacency matrices of size n; and if this bound occurs, then there...

متن کامل

Determinants of Adjacency Matrices of Graphs

Let G be a simple graph with finite number of vertices. We denote by det(G) the determinant of an adjacency matrix of G. This number det(G) is an integer and is an invariant of G so that its value is independent of the choice of vertices in an adjacency matrix. In this paper, we study the distributions of det(G) whenever G runs over graphs with finite n vertices for a given integer n ≥ 1. We de...

متن کامل

Nilpotent Adjacency Matrices and Random Graphs

While powers of the adjacency matrix of a finite graph reveal information about walks on the graph, they fail to distinguish closed walks from cycles. Using elements of an appropriate commutative, nilpotentgenerated algebra, a “new” adjacency matrix can be associated with a random graph on n vertices and |E| edges of nonzero probability. Letting Xk denote the number of k-cycles occurring in a r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2017

ISSN: 0911-0119,1435-5914

DOI: 10.1007/s00373-017-1862-8